2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Синтез гликогена в печени

Какую функцию в печени выполняет гликоген?

Печень является жизненно необходимым внутренним органом, так как она вырабатывает желчь, очищает кровь от ядов и токсинов, отвечает за выработку витаминов, поддерживает работу кроветворной системы, снабжает организм глицерином и питательными элементами, нейтрализует токсичные желчные пигменты и многое другое.

Очень важной функцией печени является еще и гликогеногенез. Гликоген – это сложный углевод. Он является своеобразным резервом организма. Хранится гликоген в печени. Кстати, не стоит путать данный элемент с целлюлозой, инсулином, фруктозой, сахарозой и глюкозой – все это совершенно разные понятия и элементы.

Гликоген состоит из соединенных в цепочку молекул глюкозы. Откладывается вещество не только в печени, но и в мышечной ткани, правда, в незначительном количестве. Рассмотрим подробнее, как происходит выработка и обмен гликогена, зачем он нужен, и в каких случаях нарушается конвертация глюкозы в гликоген.

Синтез и превращение гликогена в печени

Рассмотрим подробнее, как происходят синтез и распады гликогена в печени. Отметим, что синтез и превращение гликогена в человеческом организме несколько отличается от синтеза и превращения у животных, в том числе амфибий.

Зачем вообще нужен гликоген в организме, и почему человек не может обойтись только сахаром, то есть глюкозой? Данный вопрос в свое время заинтересовал многих именитых ученых. Еще в 20 веке доктора выяснили, что гликоген является сложным углеводом, который состоит из огромного количества молекул глюкозы. По сути, гликоген можно назвать концентрированным сахаром, который нейтрализован и не попадает в кровяное русло, пока вещество не понадобится организму.

Синтез гликогена в печени происходит, ровно, как и его дальнейшая метаболизация. Печень перерабатывает глюкозу и жирные кислоты по своему усмотрению. Кстати, жирные кислоты – это очень сложные структуры, в которых есть и углеводы, и транспортирующие белки.

Организм при помощи сахаров и жирных кислот создает гликогеновое депо, которое накапливается в клетках печени и мышечной ткани. При стрессах и интенсивных физических нагрузках гликоген выбрасывается в кровоток, чтобы насытить организм энергией.

Гликогеновое депо, а точнее его объем, значительно повышается у спортсменов, так как они затрачивают во время тренировок много энергии. Множественные включения гликогена в клетках печени человека позволяют:

  1. Повысить выносливость.
  2. Поддерживать уровень сахара в норме.
  3. Увеличить объем мышечной ткани (косвенным образом).

Если человек потребляет много простых углеводов (сладостей), то печень будет испытывать переизбыток сахара. В результате развивается жировая дегенерация печени и даже аутоиммунный гепатит.

Что влияет на уровень гликогена?

От чего зависит концентрация гликогена в печени, и по каким причинам генерализация элемента может снижаться, либо напротив – возрастать? Рассмотрим все по порядку. Изучая гистологию печени и реакции органа на физические нагрузки, длительное голодание и избыток углеводов врачи пришли к выводу, что уровень гликогена напрямую зависит от физической активности человека.

Попробуем спроектировать следующую ситуацию. У нас есть два человека – Вася и Коля. Вася – спортсмен, который занимается 3-5 раз в неделю, в его жизни регулярно присутствует анаэробный тренинг. Коля — обыкновенный человек, который работает в офисе и не занимается спортом. Безусловно, Васе нужно гораздо больше энергии, поэтому размер гликогенового депо у него будет выше.

Также метаболические процессы в печени и биосинтез гликогена будет зависеть от пищи, которую потребляет человек. Причем корреляция идентична и для взрослого, и для ребенка. Уровень гликогена зависит от:

  • Гликемического индекса потребляемой пищи. Чем он выше, тем больше организм запасает жиров.
  • Гликемической нагрузки. Об этом мы говорили выше.
  • Типа углевода. Простые углеводы быстро повышают уровень сахара в крови и способствуют отложению жира, а сложные (каши) напротив – помогают поддерживать нормальный уровень сахара на протяжении дня и не синтезировать большое количество жирных кислот.
  • Количества съеденных углеводов.

По словам диетологов, чистый сахар и сладости уходят в жировую прослойку практически сразу и целиком, а сложные углеводы могут вообще не превратиться в жирные кислоты и гликоген.

Нарушение синтеза и расщепления гликогена в печени

Синтез гликогена может как увеличиваться, так и снижаться. При этом запасы элемента в мышечной ткани и печени могут восполняться, так и истощаться соответственно. Почему так происходит, и при каких заболеваниях наблюдается нарушение метаболических процессов?

Основное заболевание-провокатор – это сахарный диабет. Существует два типа СД – инсулинозависимый и инсулиннезависимый. Точные причины возникновения сахарного диабета 1 типа неизвестны, а второй тип, предположительно, развивается вследствие переедания, дефицита физических нагрузок, гормональных сбоев, инфекционных заболеваний, панкреатита.

При сахарном диабете инсулин начинает плохо расщеплять и утилизировать глюкозу, происходит ускорение глюконеогенеза, тормозится переход глюкозы в жир, повышается активность глюкозо-6-фосфатазы.

Таким образом, при СД организм не может в достаточной мере использовать глюкозу и пополнять гликогеновое депо, вследствие чего повышается уровень сахара в крови. Максимально допустимый уровень 5,5 ммоль/л, от 6 до 6,6 ммоль/л – это преддиабет, а все что выше – сахарный диабет. Если не предпринять меры, то человек впадает в гипергликемическую кому.

В таких случаях показана госпитализация, в реанимации внутривенно вводятся медикаменты для нормализации углеводного обмена и кислотно-щелочного баланса. После выхода из комы больной должен пройти комплексную диагностику, сдать анализ крови на гликированный гемоглобин и т.д. Основная рекомендация при диабете – стабилизация рациона, инсулинотерапия и прием гипогликемических таблеток.

Нарушение синтеза и расщепления гликогена в печени также могут спровоцировать:

  1. Отсутствие физических нагрузок в соединении с употреблением большого количества простых углеводов и жиров.
  2. Патологии гепатобилиарной системы. При них гликоген перестает образовываться должным образом, сахар может сразу превращаться в жирные кислоты. Также при болезнях, связанных со здоровьем печени, возрастает активность печеночных трансаминаз. Нарушение синтеза гликогена может осуществляться при билиарном циррозе печени, печеночной недостаточности, фиброзе, вирусном, аутоиммунном, лекарственном или алкогольном гепатите, жировом гепатозе, холангите и даже острой форме холецистита.
  3. Гипоксические состояния.
  4. Гиповитаминоз B1.
  5. Гликогеноз. При этой патологии серьезно страдает печень. Гликогеноз это обобщенное понятие синдромов, при которых нарушается работа ферментов, за счет которых организму удается осуществлять синтез и расщепление гликогена.
  6. Нарушение фосфорилирования глюкозы в кишечной стенке.

Если организм начал хуже секретировать гликоген, нужно пройти дифференциальную диагностику. Чтобы врач мог генерализовать первопричину нарушений надо сначала обследовать печень. Рекомендуется сделать УЗИ печени, сдать биохимический анализ крови, сдать ПЦР и ИФА на маркеры гепатитов, сдать анализ крови на сахар. По необходимости проводится биопсия.

Биосинтез гликогена (гликогеногенез)

Гликоген — основная форма депонирования углеводов у животных — синтезируется главным образом в печени, составляя до 6% от массы печени, и в мышцах, где его содержание редко превышает 1%.

Гликоген печени выполняет важную функцию в поддержании физиологической концентрации глюкозы в крови, прежде всего в промежутках между приемами пищи. Функция мышечного гликогена состоит в том, что он является легкодоступным источником глюкозы в самой мышце. Гликоген локализирован в цитозоле клеток в форме гранул, которые кроме гликогена содержат ферменты, участвующие в его обмене.

Следует обратить внимание, что распад и синтез гликогена катализируются разными ферментами и, следовательно, протекают по разным метаболическим путям.

Синтез гликогена начинается через 1—2 ч после приема пищи, содержащей углеводы. Процесс синтеза гликогена требует затраты энергии АТФ.

  • 1. В этой реакции молекула АТФ затрачивается на фосфорилирование свободной глюкозы, в результате чего образуется глюкозо-6-фосфат. Это та же реакция, которая является первой в процессе гликолиза (гл. 18). Фосфорилирование глюкозы катализируется в мышцах гексокиназой, в печени — глюкокиназой.
  • 2. Далее следует реакция изомеризации глюкозо-6-фосфага в глюкозо-1- фосфат, которая катализируется ферментом фосфоглюкомутазой:

3. Образовавшаяся фосфорилированная глюкоза уже непосредственно вовлекается в синтез гликогена. Однако предварительно она взаимодействует с УТФ, и при действии фермента глюкозо-1 -фосфатуридинтрансферазы (другое название УДФГ-пирофосфорилаза) образуется уридиндифосфатглюкоза (УДФ-глюкоза):

Структурная формула УДФ-глюкозы:

Рис. 20.5. Синтез гликогена

Образовавшаяся УДФ-глкжоза является переносчиком и донором активированных глюкозильных остатков в последующей ферментативной реакции синтеза гликогена. Эта функция нуклеозиддифосфатсахаров была установлена аргентинским биохимиком Л. Лелуаром, удостоенным Нобелевской премии за эти работы.

4. Реакция, приводящая к образованию гликогена, происходит при переносе глюкозного остатка, входящего в состав УДФ-глюкозы, на глико- зидную «затравочную» цепь гликогена.

При этом образуется а(1—>4)-глико- зидная связь между первым атомом углерода, добавляемого остатка глюкозы и 4-гидроксильной группой остатка глюкозы в цепи гликогена. Эта реакция катализируется ферментом гликоген- синтазой (рис. 20.5).

Таким образом, в результате этой реакции происходит только удлинение цепи, т. е. она требует присутствия полиглюкозной «затравки»: самого гликогена, амилозы, амилопектина или какого-либо олигосахарида с длиной цепи не менее четырех глюкозных остатков и приводит к образованию линейного полимера а-1—*4-глюкана.

У растений донором глюкозильных групп при синтезе крахмала служит АДФ-Э-глюкоза, а не УДФ-производныс (гл. 16).

Ветвление цепей гликогена в результате образования а-1—? 6-связей (по одной на каждые 8—12 остатков, соединенных а-1—?4-связями) катализируется другим ферментом — а-глюкан-ветвящей глюкозилтрансферазой (известной также под названием «гл икогенветви щий фермент»). Этот фермент отщепляет небольшие фрагменты цепи 1,4-глюкана (шесть или семь мономерных единиц) и переносит их на ту же самую (или другую аналогичную) цепь, но в положение 6, в результате чего образуется 1,6-связь по схеме:

Регуляция гликогеногенеза. В гл. 18 приведена регуляция расщепления гликогена (гликогенолиза) посредством обратимой ковалентной химической модификации фермента гликогснфосфорилазы (фосфорилирование — дефосфорилирование). Гликогенсинтаза также существует в двух формах — фосфо- рилированной и дефосфорилированной, но она регулируется реципропно по отношению к гликогенфосфорилазе, т. е. прямо противоположным образом. В результате сложного каскада реакций фосфорилирование активной гли- когенсинтазы а приводит к переходу ее в фосфорилированную неактивную форму:

Читать еще:  Что такое стеатоз поджелудочной железы

Протсинкиназа и протеинфосфатаза — это тс же самые ферменты, которые участвовали во взаимопревращении а- и 6-форм гликогенфосфори- лазы.

Таким образом, такие гормоны, как адреналин и глюкагон, действие которых опосредовано цАМФ, синхронно ингибируют синтез гликогена и активируют гликогенолиз, тем самым их гормональное воздействие приведет к повышению сахара в клетках печени и крови (рис. 20.6).

Следует отмстить, что в мышечной ткани рецепторы глюкагона отсутствуют и регуляторное действие этого гормона на обмен гликогена отмечено лишь в печени.

Известна также аллостерическая регуляция активности гликогснсинтазы Ь. Будучи фосфорилированным, этот фермент мало или полностью неактивен, однако глюкозо-6-фосфат (при высокой концентрации) по аллостерическому механизму в значительной степени повышает активность гликогенсинтазы. Эта форма гликогенсинтазы называется D-формой или зависимой (dependent) формой от присутствия глюкозо-6-фосфата. а дефосфорилированная форма — активной и в отсутствие глюкозо-6-фосфата — 1-формой или независимой (independent) от присутствия этого модулятора.

Рис. 20.6. Гормональная регуляция синтеза и деградации гликогена:

(Т)—(б) — каскад реакций последействия глюкагона и адреналина (сплошная линия); стимулирующее действие инсулина на синтез гликогена (пунктирная линия)

Активирующее действие на синтез гликогена в мышцах оказывает также инсулин, способствуя дефосфорилированию гликогенсинтазы за счет активации протеинфосфатазы, катализирующей реакцию дефосфорилирования этого фермента.

Осуществление гликогенеза – это основа здорового обмена веществ

В организме человека постоянно протекают различные процессы и химические реакции. На поддержание жизнедеятельности необходима энергия. Гликогенез – это такой процесс, благодаря которому происходит обеспечение каждой клетки, ткани и органа, необходимой энергией. В чем особенность процесса, как протекает, и к чему приводят нарушения – далее.

Что такое гликогенез

Гликогенез – комплекс биохимических превращений в организме, которые протекают в период усвоения потребленной пищи. На протяжении первых двух часов после приема пищи, поступившие питательные вещества усваиваются и проходят через ряд преобразований. На одном из этапов преобразования поглощенных веществ осуществляется и гликогенез.

По своей сути синтез гликогена – это процесс накопления небольшого энергетического потенциала, который мобилизуется в клетках в случае резкого увеличения нагрузки. Сначала расходуется запасенная в клетках мышц энергия, которая поддерживает функционирование этой ткани. После этого начинается расходование резерва из печени, который уже распределяет энергию не только в мышцы, но и по всему организму.

Биохимия гликогенеза

В организм регулярно поступает пища. В процессе переваривания поглощенных продуктов из пищеварительного тракта в кровь всасываются углеводы. Второй этап – расщепление углеводов под действием катализатора гексокиназы до глюкозо-6-фосфат. Уже молекулы этого полученного вещества принимают участие в первом этапе синтеза гликогена.

В отдельных случаях при потреблении «сложных» углеводов, цепочка биохимических реакций до получения глюкозо-6-фосфата, оказывается длиннее. В данном случае при попадании в кровь глюкозы происходит связывание ее молекул с эритроцитами. После этого путем гликолитических реакций глюкоза превращается в лактат. Затем в печени лактат преобразуется в исходное для гликогенеза вещество – глюкозо-6-фосфат.

После получения глюкозо-6-фосфата происходит его превращение в глюкозо-1-фосфат под влиянием фермента фосфоглюкометазы. Полученное вещество расщепляется до UPD-глюкозы, а она, в свою очередь, переносит глюкозные остатки для формирования молекул гликогена.

Что такое гликоген и зачем он нужен

Гликоген (C6H10O6)n – это полисахарид, получаемый организмом из глюкозы под воздействием особых ферментов и гормонов. По своему строению этот полисахарид животного происхождения напоминает молекулы растительного крахмала, но при этом отличается химическим составом. Гликоген накапливается непосредственно в клетках в кристаллической форме, непосредственно в цитоплазме. Основные запасы этого полисахарида в человеческом организме находятся в таких клетках:

Синтез гликогена протекает главным образом в клетках печени. Там накапливается этот полисахарид и служит резервным источником энергии. В среднем печень может вмещать гликогена до 5-6% от общего объема органа. У взрослых это около 100 грамм, а у детей – до 50-60 грамм.

Гликоген в печени расходуется после того, как исчерпываются запасы этого полисахарида в мышечной ткани. Объем полисахарида в мышцах – не более 1%, при этом расходуется он локально, непосредственно в месте накопления. Мышечный гликоген служит для энергетического обеспечения процесса сокращения мышц.

Роль в спорте

Особое значение процесс синтеза гликогена имеет для людей, которые ведут активный образ жизни и занимаются спортом. Еще в 50-х годах прошлого века ученые стали изучать влияние кристаллического полисахарида на спортивные результаты. Это привело к тому, что сегодня уровень подготовленности спортсменов, достижений и количество рекордов в разы выше, чем ранее. Хороший запас гликогена обеспечивает следующие эффекты:

  • повышает выносливость на тренировках;
  • улучшает спортивные результаты;
  • снижает утомляемость;
  • ускоряет восстановление мышечной ткани после силовых нагрузок.

То есть спортсменам, желающим добиться высоких показателей на тренировках и в соревнованиях, следует особое внимание уделять углеводной пище. В результате дефицита глюкозы в организме, спортсмен не сможет выдерживать большие нагрузки. В долгосрочной перспективе это может привести к снижению производительности, повышенной утомляемости и в целом негативно сказаться на состоянии здоровья.

Спортсмены, которые вынуждены заниматься продолжительное время без перерывов, обязательно включают в свой рацион кроме углеводной пищи еще и соответствующие добавки.

Спортивные гейнеры – это порошки, которые на 80-90% состоят из углеводов. Они быстро усваиваются, принимаются непосредственно перед тренировками для того, чтобы обеспечить организм достаточным количеством глюкозы, необходимой для протекания гликогенеза.

Роль в похудении

Гликогенез играет не последнюю роль в похудении, так как незнание особенностей протекания этого процесса может привести к низким результатам в борьбе с лишним весом. Дело в том, что гликогенез – это процесс, который не может в полной мере обеспечить организм необходимой ему энергией. Более мощный энергетический резерв представляют триглицериды, то есть жировая ткань.

Но последовательность расходования энергии такова – изначально клетки потребляют гликоген, а лишь тогда, когда он заканчивается, организм приступает к расщеплению жиров. Вот как нужно использовать знания о гликогенезе.

Как стимулировать гликогенез

Чтобы не страдать от дефицита энергии и недостатка физической выносливости, важно поддерживать синтез необходимых полисахаридов. В норме у здорового человека гликогенез протекает самостоятельно даже в тех случаях, когда в организм поступает недостаточно углеводов. Но для людей, деятельность которых связана с повышенными физическими нагрузками, необходимо знать, как стимулировать процесс накопления энергии. Вот основные правила:

  1. Необходимо поддерживать здоровый баланс жидкостей в организме. Проще говоря, необходимо пить больше воды. Без жидкости все биохимические реакции в организме протекают в разы медленнее.
  2. Важно обогатить рацион продуктами, которые содержат простые и сложные углеводы.
  3. Следует придерживаться здорового режима питания. Для того чтобы своевременно восполнять потраченные запасы энергии, необходимо выдерживать промежуток между приемами пищи не более 4 часов.
  4. Крайне важно поддержание здоровья печени, отказ от вредных привычек и периодические осмотры у гепатолога. Так как частично образование полисахаридов происходит в клетках печени, проблемы с этим органом приводят к замедлению скорости протекания биохимических реакций.
  5. Не менее важна регулярность в тренировках. Организм подстраивается под энергетические потребности и при постепенном и регулярном увеличении нагрузки он начинает накапливать больше энергии.
  6. Важно не употреблять бесконтрольно различные спортивные препараты, так как они влияют на биохимические реакции и могут привести к серьезным изменениям в организме.
  7. Нельзя забывать о полноценном отдыхе и стабильном режиме сна, особенно если приходится регулярно подвергаться изнуряющим физическим нагрузкам.

Расстройства углеводного обмена

Существуют редкие заболевания, которые приводят к появлению серьезных нарушений в процессе гликогенеза. Ученые и классификаторы выделили метаболические расстройства такого типа в отдельную группу. Гликогенозы – это комплексное название различных тяжелых расстройств в синтезе гликогена в печени. Все они связаны с наследственными факторами и являются результатом врожденных патологий. Согласно современной классификации выделяют такие заболевания:

  1. Болезнь Гирке – гликогеноз первой степени, развивается в результате неспособности клеток организма к синтезу начального продукта реакций синтеза – глюкозо-6-фосфата.
  2. Второй тип – болезнь Помпе. Это расстройство связано с дефектом мальтазы, сложно поддается диагностике и требует дорогостоящего лечения. Без своевременной диагностики и лечения болезнь Помпе дает высокий процент летальных исходов.
  3. Третий тип – болезнь Форбса, характеризующаяся ферментной недостаточностью. При правильно выстроенной терапевтической тактике ребенок с этим расстройством восстановится после завершения пубертатного периода.
  4. Четвертый тип – болезнь Андерсена, приводящая к генетически обусловленному циррозу печени. Причина – дефект фермента амило-трансглюкозилазы.
  5. Пятый тип – болезнь Мак-Ардля. Это патология связана с чрезмерным накоплением гликогена в клетках мышечной ткани, из-за чего развиваются осложнения. Заболевание поддается лечению, но успешный исход зависит от того, насколько рано было диагностировано расстройство.
  6. Шестой тип – болезнь Герса. Развивается в результате недостаточной выработки фермента фосфорилазы. Приводит к чрезмерному накоплению энергетических полисахаридов в печени, из-за чего нарушаются основные функции этого органа.
  7. Седьмой тип – болезнь Таруи, развивающаяся в результате дефицита ферментов в мышечной ткани. Для диагностики используется методика биопсии. Эффективной терапии не существует – больным показана кетогенная диета и ограничение физической активности.
  8. Восьмой тип – болезнь Хага. Патология развивается по причине недостатка фермента киназы фосфорилазы и характеризуется развитием выраженной гепатомегалии. Для поддержания хорошего самочувствия больным показана безуглеводная диета.

Для каждого типа расстройства используются отличающиеся диагностические мероприятия. Диагностика проводится не только при наличии симптомов непосредственно у новорожденного. Показано комплексное обследование тем детям, у которых в роду уже наблюдались случаи развития подобных расстройств.

Читать еще:  Холестерин у вегетарианцев

Как можно увидеть, гликогенез – это важное звено цепочки обмена веществ, без которой невозможно полноценное функционирование всех органов и систем. Существуют различные способы стимуляции этих реакций, актуальные для здоровых людей. В случае если нарушения вызваны генетическими факторами, важно своевременно диагностировать проблему и строго придерживаться рекомендаций врача для ее устранения.

Синтез гликогена (гликогенез)

Прежде всего глюкоза подвергается фосфорилированию при участии фермента гексокиназы, а в печени – и глюкокиназы. Далее глюкозо-6-фосфат под влиянием фермента фосфоглюкомутазы переходит в глюкозо-1-фос-фат:

Образовавшийся глюкозо-1-фосфат уже непосредственно вовлекается в синтез гликогена. На первой стадии синтеза глюкозо-1-фосфат вступает во взаимодействие с УТФ (уридинтрифосфат), образуя уридиндифосфатглюкозу (УДФ-глюкоза) и пирофосфат. Данная реакция катализируется ферментом глюкозо-1-фосфат-уридилилтрансферазой (УДФГ-пирофосфорилаза):

Глюкозо-1-фосфат + УТФ УДФ-глюкоза + Пирофосфат.

На второй стадии – стадии образования гликогена – происходит перенос глюкозного остатка, входящего в состав УДФ-глюкозы, на глюкозидную цепь гликогена («затравочное» количество). При этом образуется α-(1–>4)-связь между первым атомом углерода добавляемого остатка глюкозы и 4-гидроксильной группой остатка глюкозы цепи. Эта реакция катализируется ферментом гликогенсинтазой. Необходимо еще раз подчеркнуть, что реакция, катализируемая гликогенсинтазой, возможна только при условии, что полисахаридная цепь уже содержит более 4 остатков D-глю-козы.

Образующийся УДФ затем вновь фосфорилируется в УТФ за счет АТФ, и таким образом весь цикл превращений глюкозо-1-фосфата начинается сначала.

В целом образование α-1,4-глюкозидной ветви («амилозной» ветви) гликогена можно представить в виде следующей схемы:

Установлено, что гликогенсинтаза неспособна катализировать образование α-(1–>6)-связи, имеющейся в точках ветвления гликогена. Этот процесс катализирует специальный фермент, получивший название гли-когенветвящего фермента, или амило-(1–>4)–>(1–>6)-трансглюкозидазы. Последний катализирует перенос концевого олигосахаридного фрагмента, состоящего из 6 или 7 остатков глюкозы, с нередуцирующего конца одной из боковых цепей, насчитывающей не менее 11 остатков, на 6-гидроксиль-ную группу остатка глюкозы той же или другой цепи гликогена. В результате образуется новая боковая цепь.

Ветвление повышает растворимость гликогена. Кроме того, благодаря ветвлению создается большое количество невосстанавливающих концевых остатков, которые являются местами действия гликогенфосфорилазы и гликогенсинтазы.

Таким образом, ветвление увеличивает скорость синтеза и расщепления гликогена.

Благодаря способности к отложению гликогена (главным образом в печени и мышцах и в меньшей степени в других органах и тканях) создаются условия для накопления в норме некоторого резерва углеводов. При повышении энерготрат в организме в результате возбуждения ЦНС обычно происходят усиление распада гликогена и образование глюкозы.

Помимо непосредственной передачи нервных импульсов к эффекторным органам и тканям, при возбуждении ЦНС повышаются функции ряда желез внутренней секреции (мозговое вещество надпочечников, щитовидная железа, гипофиз и др.), гормоны которых активируют распад гликогена, прежде всего в печени и мышцах (см. главу 8).

Как отмечалось, эффект катехоламинов в значительной мере опосредован действием цАМФ, который активирует протеинкиназы тканей. При участии последних происходит фосфорилирование ряда белков, в том числе гликогенсинтазы и фосфорилазы b – ферментов, участвующих в обмене углеводов. Фосфорилированный фермент гликогенсинтаза сам по себе малоактивен или полностью неактивен, но в значительной мере активируется положительным модулятором глюкозо-6-фосфатом, который увеличивает Vmaxфермента. Эта форма гликогенсинтазы называется D-формой, или зависимой (dependent) формой, поскольку ее активность зависит от глюкозо-6-фосфата. Дефосфорилированная форма гликоген-синтазы, называемая также I-формой, или независимой (independent) формой, активна и в отсутствие глюкозо-6-фосфата.

Таким образом, адреналин оказывает двойное действие на обмен углеводов: ингибирует синтез гликогена из УДФ-глюкозы, поскольку для проявления максимальной активности D-формы гликогенсинтазы нужны очень высокие концентрации глюкозо-6-фосфата, и ускоряет распад гликогена, так как способствует образованию активной фосфорилазы а. В целом суммарный результат действия адреналина состоит в ускорении превращения гликогена в глюкозу.

Гликоген — это легкоиспользуемый резерв энергии

Мобилизация гликогена (гликогенолиз)

Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки.

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются.

В мышцах количество гликогена снижается обычно только во время физической нагрузки – длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд.

Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови «целенаправленно» поддерживает только печень, в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.

В гликогенолизе непосредственно участвуют три фермента:

1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) – расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы.

Роль фосфорилазы при мобилизации гликогена

2. α(1,4)-α(1,4)-Глюкантрансфераза – фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и «открытая» доступная α1,6-гликозидная связь.

3. Амило-α1,6-глюкозидаза, («деветвящий» фермент) – гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.

Роль ферментов в расщеплении гликогена

Синтез гликогена

Гликоген способен синтезироваться почти во всех тканях, но наибольшие запасы гликогена находятся в печени и скелетных мышцах. Накопление гликогена в мышцах отмечается в период восстановления после нагрузки, особенно при приеме богатой углеводами пищи. В печени синтез гликогена происходит только после еды, при гипергликемии. Это объясняется особенностями печеночной гексокиназы ( глюкокиназы ), которая имеет низкое сродство к глюкозе и может работать только при ее высоких концентрациях, при нормальных концентрациях глюкозы в крови ее захват печенью не производится.

Непосредственно синтез гликогена осуществляют следующие ферменты:

1. Фосфоглюкомутаза – превращает глюкозо-6-фосфат в глюкозо-1-фосфат;

2. Глюкозо-1-фосфат-уридилтрансфераза – фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата;

Реакции синтеза УДФ-глюкозы

3. Гликогенсинтаза – образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С 1 УДФ-глюкозы к С 4 концевого остатка гликогена;

Химизм реакции гликогенсинтазы

4. Амило-α1,4-α1,6-гликозилтрансфераза,»гликоген-ветвящий» фермент – переносит фрагмент с минимальной длиной в 6 остатков глюкозы на соседнюю цепь с образованием α1,6-гликозидной связи.

Гликоген: энергетические резервы человека — почему важно знать о них, чтобы похудеть?

Что это за зверь такой «гликоген»? Обычно о нем вскользь упоминается в связи с углеводами, однако мало кто решает углубиться в саму суть данного вещества.

Кость Широкая решила рассказать вам все самое важное и нужное о гликогене, чтобы больше не верили в миф о том, что «сжигание жиров начинается только после 20 минуты бега». Заинтриговали?

Итак, из этой статьи вы узнаете: что такое гликоген, строение и биологическую роль, его свойства, а также формулу и структуру строения, где и для чего содержится гликоген, как происходит синтез и распад вещества, как происходит обмен, а также, какие продукты являются источником гликогена.

Что это такое в биологии: биологическая роль

Нашему телу еда в первую очередь нужна как источник энергии, а уже потом, как источник удовольствия, антистрессовый щит или возможность «побаловать» себя. Как известно, энергию мы получаем из макронутриентов: жиров, белков и углеводов.

Жиры дают 9 ккал, а белки и углеводы — 4 ккал. Но не смотря на большую энергетическую ценность жиров и важную роль незаменимых аминокислот из белков важнейшими «поставщиками» энергии в наш организм являются углеводы.

Почему? Ответ прост: жиры и белки являются «медленной» формой энергии, т.к. на их ферментацию требуется определенное время, а углеводы — относительно «быстрой». Все углеводы (будь то конфета или хлеб с отрубями) в конце концов расщепляются до глюкозы, которая необходима для питания всех клеток организма.

Схема расщепления углеводов

Строение

Гликоген — это своеобразный «консервант» углеводов, другими словами, энергетические резервы организма — сохраненная про запас для последующих энергетических нужд глюкоза. Она хранится в связанном с водой состоянии. Т.е. гликоген — это «сироп» калорийностью 1-1.3 ккал/гр (при калорийности углеводов 4 ккал/г).

По сути, молекула гликогена состоит из остатков глюкозы, это запасное вещество на случай нехватки энергии в организме!

Структурная формула строения фрагмента макромолекулы гликогена (C6H10O5) выглядит схематично так:

К какому виду углеводов относится

Вообще, гликоген — это полисахарид, а значит, относится к классу «сложных» углеводов:

В каких продуктах содержится

В гликоген может пойти только углевод. Поэтому крайне важно держать в своем рационе планку углеводов не ниже 50 % от общей калорийности. Употребляя нормальный уровень углеводов (около 60% от суточного рациона) вы по максимуму сохраняете собственный гликоген и заставляете организм очень хорошо окислять углеводы.

Важно иметь в рационе хлебобулочные изделия, каши, злаки, разные фрукты и овощи.

Лучшими источниками гликогена являются: сахар, мед, шоколад, мармелад, варенье, финики, изюм, инжир, бананы, арбуз, хурма, сладкая выпечка.

Осторожно к подобной пище стоит отнестись лицам с дисфункцией печени и недостатком ферментов.

Метаболизм

Как же происходит создание и процесс распад гликогена?

Синтез

Как организм запасает гликоген? Процесс образования гликогена (гликогенез) проходит по 2 сценариям. Первый — это процесс запаса гликогена. После углеводосодержащей еды уровень глюкозы в крови повышается. В ответ инсулин попадает в кровоток, чтобы впоследствии облегчить доставку глюкозы в клетки и помочь синтезу гликогена.

Читать еще:  Принципы обследования поджелудочной железы

Благодаря ферменту (амилазе) происходит расщепление углеводов (крахмала, фруктозы, мальтозы, сахарозы) на более мелкие молекулы.

Затем под воздействием ферментов тонкого кишечника осуществляется распад глюкозы на моносахариды. Значительная часть моносахаридов (самая простая форма сахара) поступает в печень и мышцы, где гликоген откладывается в «резерв». Всего синтезируется 300-400 гр гликогена.

Т.е. само превращение глюкозы в гликоген (запасной углевод) происходит в печени, т.к. мембраны клеток печени в отличие от мембраны клеток жировой ткани и мышечных волокон свободно проницаемы для глюкозы и в отсутствие инсулина.

Распад

Второй механизм под названием мобилизация (или распад) запускается в периоды голода или активной физической деятельности. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Когда организм истощает запас гликогена в клетках, то мозг подает сигналы о необходимости «дозаправки». Схема синтеза и мобилизации гликогена:

Кстати, при распаде гликогена происходит торможение его синтеза, и наоборот: при активном образовании гликогена его мобилизация тормозится. Гормоны, отвечающие за мобилизацию данного вещества, т.е., гормоны, стимулирующие распад гликогена — это адреналин и глюкагон.

Где содержится и каковы функции

Где накапливается гликоген для последующего использования:

В печени

Включения гликогена в клетках печени

Основные запасы гликогена находятся в печени и мышцах. Количество гликогена в печени может достигать у взрослого человека 150 — 200 гр. Клетки печени являются лидерами по накоплению гликогена: они могут на 8 % состоять из этого вещества.

Основная функция гликогена печени — поддержать уровень сахара в крови на постоянном, здоровом уровне.

Печень сама себе является одним из важнейших органов организма (если вообще стоит проводить «хит парад» среди органов, которые нам все необходимы), а хранение и использование гликогена делает ее функции еще ответственнее: качественное функционирование головного мозга возможно только благодаря нормальному уровню сахара в организме.

Если же уровень сахара в крови снижается, то возникает дефицит энергии, из-за которого в организме начинается сбой. Нехватка питания для мозга сказывается на центральной нервной системе, которая истощается. Тут то и происходит расщепление гликогена. Потом глюкоза поступает в кровь, благодаря чему организм получает необходимое количество энергии.

Запомним также, что в печени происходит не только синтез гликогена из глюкозы, но и обратный процесс — гидролиз гликогена до глюкозы. Этот процесс вызывается понижением концентрации сахара в крови в результате усвоения глюкозы различными тканями и органами.

В мышцах

Гликоген откладывается также в мышцах. Общее количество гликогена в организме составляет 300 — 400 граммов. Как мы знаем, около 100-120 граммов вещества накапливается в клетках печени, а вот остальная часть (200-280 гр) сохраняется в мышцах и составляет максимум 1 — 2% от общей массы этих тканей.

Хотя если говорить максимально точно, то следует отметить, что гликоген хранится не в мышечных волокнах, а в саркоплазме — питательной жидкости, окружающей мышцы.

Количество гликогена в мышцах увеличивается в случае обильного питания и уменьшается во время голодания, а снижается только во время физической нагрузки – длительной и/или напряженной.

При работе мышц под влиянием специального фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное распад гликогена в мышцах, который используется для обеспечения глюкозой работы самих мышц (мышечных сокращений). Таким образом, мышцы используют гликоген только для собственных нужд.

Интенсивная мышечная деятельность замедляет всасывание углеводов, а легкая и непродолжительная работа усиливает всасывание глюкозы.

Гликоген печени и мышц используется для разных нужд, однако говорить о том, что какой-то из них важнее — абсолютнейший вздор и демонстрирует только вашу дикую неграмотность.


Все, что написано на данном скрине, полная ересь. Если вы боитесь фруктов и думаете, что они прямиком запасаются в жир, то никому не говорите этой чуши и срочно читайте статью Фруктоза: можно ли есть фрукты и худеть?

Применение при похудении

Важно знать, почему работают низкоуглеводные высокобелковые диеты. В организме взрослого может находиться около 400 граммов гликогена, а как мы помним, на каждый грамм резервной глюкозы приходится примерно 4 грамма воды.

Т.е. около 2 кг вашего веса — это масса гликогенного водного раствора. Кстати, поэтому мы активно потеем в процессе тренировок — организм расщепляет гликоген и при этом теряет в 4 раза больше жидкости.

Этим свойством гликогена объясняется и быстрый результат экспресс-диет для похудения. Безуглеводные диеты провоцируют интенсивное израсходование гликогена, а с ним – жидкости из организма. Но как только человек возвращается к обычному рациону с содержанием углеводов, запасы животного крахмала восстанавливаются, а с ними и потерянная за период диеты жидкость. В этом и кроется причина недолгосрочности результата экспресс-похудения.

Влияние на спорт

Для любых активных физических нагрузок (силовые упражнения в тренажерном зале, бокс, бег, аэробика, плавание и все, что заставляет вас потеть и напрягаться) организму нужно 100-150 граммов гликогена в каждый час активности. Потратив запасы гликогена, тело начинает разрушать сперва мышцы, затем жировую ткань.

Обратите внимание: если речь идет не о длительном полном голодании, запасы гликогена не истощаются полностью, потому что имеют жизненно важное значение. Без запасов в печени мозг может остаться без снабжения глюкозой, а это смертельно опасно, ведь мозг самый главный орган (а не попа, как некоторые думают).

Без запасов в мышцах сложно совершить интенсивную физическую работу, что в природе воспринимается как повышенный шанс быть съеденным/без потомства/замерзшим и т.д.

Тренировки истощают запасы гликогена, но не по схеме «первые 20 минут работаем на гликогене, потом переходим на жиры и худеем».

Для примера возьмем исследование, в котором тренированные атлеты выполняли 20 сетов упражнений на ноги (4 упражнения, 5 сетов каждого; каждый сет выполнялся до отказа и составлял 6-12 повторений; отдых был коротким; общее время тренировки составило 30 минут).

Кто знаком с силовыми тренировками, понимает, что было отнюдь не легко. До и после упражнения у них брали биопсию и смотрели содержание гликогена. Оказалось, что количество гликогена снизилось с 160 до 118 ммоль/кг, т. е. менее, чем на 30%.

Вот так походя мы развеяли еще один миф — вряд ли за тренировку вы успеете исчерпать все запасы гликогена, так что не стоит набрасываться на еду прямо в раздевалке среди потных кроссовок и посторонних тел, вы явно не помрете от «неминуемого» катаболизма.

Кстати, пополнять запасы гликогена стоит не в течении 30 минут после тренировки ( увы, белково-углеводное окно – миф ), а в течении 24 часов.

Люди крайне преувеличивают скорость истощения гликогена (как и многие другие вещи)! Любят сразу на тренировке закинуться «углями» после первого разминочного подхода с грифом пустым, а то ж «истощение мышечного гликогена и КАТАБОЛИЗМ». Прилег на час днем и усе, печеночного гликогена как не бывало.

Мы уж молчим про катастрофические энергозатраты от 20минутного черепашьего бега. Да и вообще, мышцы жрут чуть не 40 ккал на 1 кг, белок гниет, образует слизь в жкт и провоцирует рак, молочка заливает так, что аж 5 лишних кило на весах (не жира, ага), жиры вызывают ожирение, углеводы смертельно опасны (боюсь-боюсь) и от глютена вы точно помрете.

Странно только, что мы вообще ухитрились выжить в доисторические времена и не вымерли, хотя питались явно не амброзией и спортпитом.

Помните, пожалуйста, что природа умнее нас и давно все при помощи эволюции отрегулировала. Человек один из самых адаптированных и приспосабливаемых организмов, который способен существовать, размножаться, выживать. Так что без психозов, господа и дамы.

Однако тренироваться на пустой желудок более чем бессмысленно.»Что же делать?» подумаете вы. Ответ вы узнаете в статье «Кардио: когда и зачем?» , которая расскажет вам о последствиях голодных тренировок.

За какое время расходуется?

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 48-60 часов полного голодания запасы гликогена в печени полностью истощаются.

Гликоген мышц расходует во время физической активности. И тут мы опять вернемся к мифу: «Чтобы сжечь жир, нужно бегать не менее 30 минут, поскольку только на 20-й минуте в организме истощаются запасы гликогена и в качестве топлива начинает использоваться подкожный жир», только с чисто математической стороны. Откуда это пошло? А пес его знает!

Действительно, организму проще использовать гликоген, чем окислять жир для энергии, поэтому в первую очередь расходуется он. Отсюда и миф: надо сначала израсходовать ВЕСЬ гликоген, и потом жир начнет гореть, а произойдет это примерно через 20 минут после начала аэробной тренировки. Почему 20? Понятия не имеем.

НО: никто не учитывает, что использовать весь гликоген не так-то просто и 20-ю минутами тут дело не ограничится.

Как мы знаем, общее количество гликогена в организме составляет 300 — 400 граммов, а в некоторых источниках говорится о 500 граммах, что дает нам от 1200 до 2000 ккал! Вы вообще представляете, сколько нужно бегать, чтобы истощить такую прорву калорий? Человек весом в 60 кг должен будет пробежать в среднем темпе от 22 до З5 километров. Ну как, готовы?

Истощила гликоген ?

Ссылка на основную публикацию
Adblock
detector